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Abstract

Transfer learning for adaptation to new tasks is usually performed by either fine-
tuning all model parameters or parameters in the final layers. We show that good
target performance can also be achieved on typical domain adaptation tasks by
adapting only the normalization statistics and affine transformations of layers
throughout the network. We apply this adaptation scheme to supervised domain
adaptation on common digit datasets and study robustness properties under per-
turbation by noise. Our results indicate that (1) adaptation to noise exceeds the
difficulty of widely used digit benchmarks in domain adaptation, (2) the similarity
of the optimal adaptation parameters for different domains is strongly predictive
of generalization performance, and (3) generalization performance is highest with
training on a rich environment or high noise levels.

1 Introduction

After the initial success of deep learning algorithms in computer vision (Krizhevsky et al., 2012),
transfer by fine-tuning either the final layers or all network parameters on a new visual domains
became an important scheme for many application settings (Donahue et al., 2013).

While adaptation of earlier network layers is crucial for good performance on a target task that differs
from the source domain (Kornblith et al., 2018), the question of ow to perform this adaptation is
less well investigated. In the context of multi-task, sequential, or meta-learning settings where the
objective is to transfer and keep knowledge between different tasks, this question is of importance.
Motivated by Geirhos et al. (2018) and previous results by Rebuffi et al. (2017), Cariucci et al.
(2017) and Li et al. (2016), which indicate that adaptation of normalization statistics and a feature-
map specific offset and scaling throughout a convolutional network is sufficient for adaptation with
reasonable performance, we study this kind of multi-task generalization in typical domain adaptation
scenarios.

We make the following contributions: First, we corroborate previous results that conditioning a model
on a new task by only adapting a small set of normalization and affine parameters is sufficient for
multi-task learning on reasonable performance levels. Second, we investigate the interplay between
the “richness” of a task and the effects on generalization. Third, in controlled training settings with
two different noise models, we find that (1) applying parameters obtained in a low-noise setting to the
high-noise setting leads to degrading performance levels strongly correlated with the cosine similarity
between the parameter vector and the optimally adapted parameter vector, and (2) parameters obtained
in a high-noise setting generalize well to low-noise settings, even in our minimal fine-tuning scheme.
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Figure 1: Model architecture using conditional batch normalization: Figure 2: Domain adaptation
By only adapting normalization statistics and the following affine matrix between four digit
transformation to the target domain, the task-specific behaviour is datasets.

distilled into a few thousand parameters.

Training

Our experiments differ from previous work: In contrast to Rebuffi et al. (2017), we consider the
classical domain adaptation setting, in which the label space is shared between tasks and the classifier
does not have to be adapted.

2 Methods

We consider multi-task learning among a source task S and a set of target tasks {7,, }_,, where by

task, we consider an underlying data distribution of causes Y (here: labels), effects X (here: images)
and conditions T', given by the task-specific probability density function (pdf) T;(z,y) := p(x|y,t =
1)p(y|t = 7). As in many machine learning problems, we aim at inferring the conditional distribution
of Y|.X with pdf p(y|z) for anti-causal inference from a set of samples. In this work, we consider a
“best-case” setting with access to samples from all tasks.

Structural Learning in Deep Networks. Structural learning is a term originally derived from
sensorimotor research (Braun et al., 2009) and denotes a training setting in which by learning from
many different environments, adaptation to a novel setting no longer requires an adaptation of all
model parameters. Instead, adaptation within a lower-dimensional subspace of parameters is sufficient
for fast and sufficiently accurate performance.

This motivates us to approach the process of fine-tuning deep neural networks not by adapting all
parameters, but only a constrained (small) subset. We first train on a large labeled training set and
then fine-tune on the labeled target data set.

Distilling multi-task knowledge into 0.1% of parameters. For simplification, we use a model
hg, with two sets of parameters. We optimize 6 along with ¢s on the source task S. While usual
fine-tuning would adapt both sets of parameters on a target task 7, we refrain from doing so and only
fine-tune the selected subset ¢ for each target domain, solving the (independent) ERMs

N
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which can be either trained in parallel or sequentially as data becomes available, depending on the
exact learning setup. In our experiments, we solve both ERMs jointly, but stress that no information
about the target domains 7; is used to derive either 6 or ¢g, as evident from Eq. 1. While different
choices for this conditioning are possible, we choose to update the statistics for batch normalization,
along with fine-tuning the following affine transformation, similar to previous work by Li et al. (2016)
and Rebuffi et al. (2017), and as depicted in Fig. 2. Note that in this case, the dimensionality of ¢
is considerably smaller than 6, and fine-tuning to a particular task is exclusively reflected by these
parameters, since 6 was never trained on the target tasks. We used dim ¢; ~ 8000 and dim # ~ 10°
in the experiments presented below.

Tasks. We perform two different experiments with different underlying motivations. For the first set
of experiments, we consider four popular digits datasets: MNIST (LeCun et al., 1998), Street View
House Numbers (SVHN) (Netzer et al., 2011), USPS (Hull, 1994) and Synthetic Images (SYNTH)
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Figure 3: Adaptation from low noise to varying (higher) levels of Gaussian noise (left) and salt &
pepper noise (right). Matrices show domain adapted on in rows and domain tested on in columns.
Scatter plots show that performance correlates with the angles between the optimal adaptation
parameters for source and target domain (scale: vy and offset: ().

(Ganin et al., 2016), yielding four distinct tasks. For the second set, we augment the SVHN dataset
with either additive point-wise Gaussian noise (with varying variance o € [0.001, 0.3]) or point-wise
Salt-and-Pepper (S&P) noise (with varying ps = pp =: p/2 € [0,0.18]). These perturbations yield
nine tasks for each noise model. We select either the lowest or the highest noise variance as the
source task S.

Quantitative Comparison of Task-Specific Parameters. Due to the previously described condi-
tioning of the model on a task, it is possible to compare models adapted to a particular task in a much
smaller parameter space compared to a full neural network. For the problems and network model
considered here, this amounts to around 8,000 parameters evenly split between bias, scale, mean and
variance parameters. As a metric to compare tasks 7; and 7;, we use the cosine similarity, i. e., the
angle between the fine-tuned parameter vectors denoted as

S d;
(ealiit=Al

Domain Adaptation The fully supervised scenario provides an upper-bound for the performance
of a multi-task learner under the chosen conditioning setting. Beyond this supervised scenario, we
are interested in the reverse question of how much information can actually be leveraged without any
target labels. This is the setting considered in unsupervised domain adaptation (cf. Ben-David et al.
(2010) for a review). In addition to our main study, we apply several recent state-of-the-art domain
adaptation algorithms on the considered task and conclude that surprisingly, the noise adaptation
setting seems to be a harder challenge than adaptation between digit domains on SVHN. We evaluate
the approaches of Sun et al. (2017), French et al. (2017), Haeusser et al. (2017) and Shu et al. (2018).

2
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Implementation and model availability. We implemented all experiments using the salad tool-
box (Schneider et al., 2018) for PyTorch (Paszke et al., 2017) and release the code for reproducing
our results as well as trained models at https://github.com/stes/nips2018-continual.

3 Experiments and Results

Internal adaptation (almost) matches fine-tuning performance on digit benchmarks. In this
first part, we demonstrate that by simply adapting the offset and scale of each feature map (Fig. 1),
we achieve a performance comparable to that of recent domain adaptation algorithms on several digit
adaptation tasks. We train a model on different image domains and fine-tune it to various target tasks
with the proposed adaptation scheme. Our results show that training on “visually rich” domains is
crucial for obtaining good transfer performance (Fig. 2), presumably because it enables the model to
learn more diverse feature representations. This is a crucial insight for the development of domain
adaptation algorithms and motivates the use of generative models and translation-based approaches
when synthetic data is used during training time (cf. Shrivastava et al. (2016)).

Cosine Similarity is predictive of model performance. In our second experiment, we compare
network properties when training on images perturbed by different types of noise (Gaussian and salt
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& pepper) at different noise levels. We train networks in two different configurations on each of the
two noise models. In the first part, we train a model in the low Gaussian or low S&P noise setting
S := 71, and fine-tune the network jointly on the remaining tasks 7o, ..., 7g. After convergence,
the parameter configuration is given by the large set of parameters 6 derived from the source task
(training configuration), along with the small subset of parameters ¢; (scales and offsets) adapted
to a particular target task 7; (adaptation). For each test task 7, we evaluate the performance of all
adaptation configurations (6, ¢; ), yielding a total of 81 comparisons. As depicted in Fig. 3 and further
in §C we find that, for both noise models, the parameter angle o;; is predictive of the (degradation
of) model performance, in cases where the noise during test time has greater variance than during
training (o; > o; and p; > p;).

Noise Robustness of Different Parameter Settings. This correlation is only observed in cases
where the adaptation noise variance o; is lower than the testing noise variance o}, i.e., for all
combinations of tasks in {7;, 7} : 0; > o;}, or the upper triangular part in Fig. 3. The observation
does not hold for the lower triangular part, i.e., for cases where the adaptation noise was higher
than the testing noise. In general, this result corroborates the general intuition that training with
additionally "injected" noise variance, e.g. by means of data augmentation (Krizhevsky et al., 2012),
improves model robustness under this particular noise model.

Noise Adaptation as Unsupervised Domain Adaptation. So far Target Accuracy [%], S&P, p=0.15

we considered the case where we have full label information on the - .
. AssociativeSolver 69.0 [[0E

target tasks to obtain upper bounds on the target performance. We

now evaluate the noisy digit benchmark in an unsupervised setting. DeepCoralSolver 66.0

We test recent algorithms on the perturbed versions of SVHN and

SYNTH with fixed S&P noise (ps = pp = 0.15) and find that SelfEnsemblingSolver

especially the SVHN benchmark is surprisingly hard (Fig. 4). While

transfer from SVHN to SYNTH is easily solved by most algorithms VADASolver

(>95% performance with most algorithms considered by Schneider svhn synth

et al. (2018)), transfer from SYNTH to a noisy version of SYNTH Benchmark [Clean — S&P]

is already challenging for some algorithms. Similarly, transfer from _,
SVHN to noisy SVHN seems to be a harder task than transfer from Flgure 4 Performange of var-
SYNTH to SVHN (88.1%/78.8%/39.7%/85.3% for the different 10US domain adaptation algo-
solvers, cf. Schneider et al. (2018)). We conclude that unsupervised rithms adaptmg'from clean to
adaptation to noise is an interesting and challenging problem that S&P-perturbed images.
should be considered in future work on domain adaptation.

Control Experiments, obtaining 6 in the high noise case. In the second part, serving as a control
experiment, we also train models in the high Gaussian and high S&P noise setting, S := Ty, and fine-
tune jointly on 77, .. ., 7. For the Gaussian noise model, performance degrades with the introduction
of noise (from 96% to 85%). However, the adaptation scheme considered here is very effective for
Gaussian noise, as indicated by the main diagonals in Fig. S1, with a performance gap of 77% vs.
85% for 6 obtained on low and high noise, respectively. For the S&P model, this is not true, and
full performance of 96% accuracy can be obtained in both settings. However, adaptation with our
proposed scheme is not as effective as before, and the performance gap for evaluation in the high
noise setting is much bigger (62% vs. 96%, cf. Fig. S2). Full results can be found in §C.2 and §C.4.

4 Conclusion

We studied adaptation and generalization properties of convolutional neural networks in different
benchmark settings using digit datasets. We conclude that adaptation of a very limited subset
of parameters (as little as 0.1% of network parameters) can be sufficient to provide competitive
performance, but only given that the source task to train on is sufficiently “rich”, thereby extending
the previous results by Rebuffi et al. (2017). These findings motivate (1) the use of real world datasets
over synthetic ones as well as (2) rethinking the use of translation-based domain adaptation algorithms
as a method to “enrich” the distribution of a synthetic dataset.

To further investigate the latter result, we considered this behaviour more closely in the context of
a synthetic, point-wise noise model in which the “richness” of a task is a controllable parameter.
Our results in this controlled setting suggest that within the 8000-dimensional space of adaptation



parameters, configurations derived on high-noise domains attain a much lower empirical risk on any
the target tasks than configurations obtained on low-noise domains. Given the limited dimensionality
of the adaptation parameters, this motivates follow-up work in meta-learning, few shot adaptation
and multi-task learning investigating whether it is possible to directly infer these configurations from
properties of the data without relying on any label information.
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Supplementary Material

A Network Modules

A.1 Conditional Layers

The adaptable part of our network architecture outlined below is a ConditionalBatchNorm layer,
performing the operation:

x — p(c)

f(x;c)zw

©7(e) + B(e) 3)

We note that other choices for f are certainly possible, i.e., depth-separated convolutions, residual con-
nections as used by Rebuffi et al. (2017), and other adaptation modules. Extending our experimental
setup is easily possible for these kind of experiments.

A.2 Model Architecture

For specific questions regarding model parameters, the exact training setups and hyperparameters,
please refer to the software repository we are releasing along with this paper. As a first insight, we
share the model architecture here:

)

DigitModel (

(features): DigitFeatures(

)

(norm) :

(convi_1):

(convi_1_bn):

(convi_2):

(convi_2_bn):

(convi_3):

(conv1_3_bn):

(pooll):

(drop1):
(conv2_1):

(conv2_1_bn):

(conv2_2):

(conv2_2_bn) :

(conv2_3):

(conv2_3_bn):

(pool2):

(drop2):
(conv3_1):

(conv3_1_bn):

(nin3_2):
(nin3_2_bn):
(nin3_3):
(nin3_3_bn):

(classifier):

InstanceNorm2d (3, eps=1e-05, momentum=0, affine=False,
track_running_stats=False)

Conv2d (3, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ConditionalBatchNorm()

Conv2d (128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ConditionalBatchNorm()

Conv2d (128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ConditionalBatchNorm()

MaxPool2d (kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1,
ceil_mode=False)

Dropout (p=0.5)

Conv2d (128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ConditionalBatchNorm()

Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ConditionalBatchNorm()

Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ConditionalBatchNorm()

MaxPool2d (kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1,
ceil_mode=False)

Dropout (p=0.5)

Conv2d (256, 512, kernel_size=(3, 3), stride=(1, 1))
ConditionalBatchNorm()

Conv2d (512, 256, kernel_size=(1, 1), stride=(1, 1), padding=(1, 1))
ConditionalBatchNorm()

Conv2d (256, 128, kernel_size=(1, 1), stride=(1, 1), padding=(1, 1))
ConditionalBatchNorm()

Linear (in_features=128, out_features=10, bias=True)



B Control Experiments: High Noise Training Settings

As a control experiments, we train networks in the high noise setting to get an understanding of
upper-bound performance.
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Figure S1: Comparision between adaptation results based on the training domain for #: The left
figure shows adaptation results when @ is derived on the low noise domain o7 = 0.001, and ¢; is
adapted to the noise settmg o?. The right figure shows adaptation results when 6 is derived on the
high noise domain o2 = 0.3, and ¢; is adapted to the noise setting o2. Notably, in the Gaussian noise
setting, overall training performance degrades even in the case When all parameters 6, ¢g are adapted
to match the high noise setting, yielding a maximum achievable performance of 85% with the chosen

model.
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Figure S2: Similar organization as in Fig. S 1, but for the Salt&Pepper case, where the main parameters
are trained on low noise in the left, and in the high noise setting in the right plot. Crucially, in contrast
to Gaussian noise, the adaptation scheme works less well when transferring from very severe noise to
low noise, indicating that this perturbation scheme more closely resembles distinct tasks that require
a larger amount of adaptation, at least in the extreme cases. Up to p = 0.15, the results more closely
match the Gaussian case. Very interestingly, the model is able to fully adapt to the high S&P noise
model, in contrast to the high variance Gaussian model.



C Parameter Angle is Predictive of Performance

We provide additional material for extending Fig. 3. The left part of Fig. 3 is a part of the full results
depicted in §C. 1, the right part of Fig. 3 is part of §C.3. For the control experiments, we show the
same plots in §C.2 and §C.4 for Gaussian and Salt and Pepper noise, respectively. We note that in
these settings, the correlation is less clear, especially for the Gaussian noise setting.

C.1 Gaussian Noise, Training on low noise domain
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Figure S3: Relationship between angles of different adaptation parameters (top to bottom: u(c),
a%(c), y(c), B(c)). Regarding transfer accuracy (middle), parameter angle is predictive of accuracy
when adaptation is performed on a domain richer (with higher noise variance) than the test domain.



C.2 Gaussian, Training on high noise domain
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Figure S4: Control experiments with most parameters tuned on the high noise case: Relationship
between angles of different adaptation parameters (top to bottom: 1 (c), o%(c), v(c), B(c)). Note that
the resulting parameter angles are much more similar compared to the low-noise case, indicating the
model weights transfer better.
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C.3 Salt and Pepper Noise, Training on low noise domain
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Figure S5: Relationship between angles of different adaptation parameters (top to bottom: u(c),
a2(c), v(c), B(c)). Results are consistent with the Gaussian noise case, albeit the values are more
scattered for the variance parameter.
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C4

Salt and Pepper Noise, Training on high noise domain
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Figure S6: Relationship between angles of different adaptation parameters (top to bottom: u(c),
a2(c), v(c), B(c)). As in the Gaussian noise case, less adaptation in the parameters is required.
However, difference in parameter angles is bigger compared to the high Gaussian noise setting, which
aligns with the result that transfer is more challenging in the S&P setting.
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D Digit Adaptation

We show the full data for the supervised digit adaptation experiments in Fig. 2. In particular, for all
tuples (i, j, k) denoting indices of the task for training, adaptation and testing, we derive parameters
6; on the training task 7;, adapt ¢; on the adaptation task 7;, following the objective

Test

0i, ¢i = argmin Bo yo7; [((ho, 0, (2);9)], - &5 = argminBa yoo7; (0o, 6, (2)i9)], (4
iyP1 J
and evaluate the risk on the target or test task 7 as
EI7?J€7—Icg(h91‘,¢i (x)vy) ©)
For 4 domains, this yields 64 experiments in total.
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Figure S7: From left to right, we show the full results for training § on MNIST, USPS, SYNTH or
SVHN, respectively, along with all combinations for adaptation and testing. Note that in the main
text, we only discuss the cases where adaptation and test domains are equivalent.
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